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radiant space heater, people near the heater begin to feel warmer 
before the heater has had a chance to raise the temperature of the 
entire room. 

Since the early days of modeling, thermal radiation transport 
codes have been used at Livermore to simulate how thermally 
generated photons interact with material. To set up a calculation 
using these codes, computer scientists divide a material into 
chunks called zones. Then they incorporate such data as the 
material’s properties and the photons’ initial energies, frequencies, 
and directions of travel. Time is also chopped into discrete steps. 
Once the problem is set up, the computer grinds through its 
calculations—step by step, photon by photon, zone by zone—to 
model how the photons, which transport the thermal energy, move 
through the material. 

Modeling this thermal radiation phenomenon has always 
been difficult, Brooks notes. For example, a photon’s mean free 
path—the average distance it travels before colliding with another 
photon—may be shorter than the length of the zone, or its mean 
free time may be shorter than the time step. These problems are 
frequently encountered in opaque systems such as the interior of 
stars. Scientists have developed several mathematical methods to 
solve such problems, including Monte Carlo radiation transport.

Tweaking for Results
Until 1970, the Monte Carlo method used to solve thermal 

radiation problems was very unstable, Brooks says. “In solving 
the equations over and over, proceeding through each time step, 
the numerical solutions had errors that grew over time. It wasn’t a 
physical phenomenon, but a mathematical artifact that popped up 
in solving the problem on the computer.” 

In 1971, Joe Fleck and J. D. Cummings worked out an 
innovative method to dampen this mathematical instability, a 
scheme they called implicit Monte Carlo (IMC). In essence, they 
introduced the concept of effective scattering, wherein a fraction 
of the radiative energy absorbed during a time step is instantly 
reemitted in all directions before the next time step. In contrast, the 
more conventional Monte Carlo methods do not emit the absorbed 
photons until the following step—a process that over time causes 
the numerical instability. IMC was thus more stable and more 
accurate than traditional methods for certain situations. However, 
the effective scattering calculations required a lot of computer time 
to solve.

H  UGE computers, huge codes, complex problems to solve. 
The longer it takes to run a code, the more it costs. One way 

to speed things up and save time and money is through hardware 
improvements—faster processors, different system designs, bigger 
computers. But another side of supercomputing can reap savings 
in time and speed: software improvements to make codes—
particularly the mathematical algorithms that form them—run 
faster and more efficiently. 

Speed up math? Is that really possible? According to Livermore 
physicist Eugene Brooks, the answer is a resounding yes.

“Sure, you get great speedups by improving hardware,” 
says Brooks, the deputy leader for Computational Physics in 
N Division, which is part of Livermore’s Physics and Advanced 
Technologies (PAT) Directorate. “But the real bonus comes on the 
software side, where improvements in software can lead to orders 
of magnitude improvement in run times.”

Brooks knows whereof he speaks. Working with Laboratory 
physicist Abraham Szöke and others, he has been instrumental 
in devising ways to shrink the running time of what has, 
historically, been a tough computational nut to crack: radiation 
transport codes based on the statistical or Monte Carlo method 
of calculation. (See the box on p. 18.) And Brooks is not the only 
one. Others around the Laboratory, including physicists Andrew 
Williamson, Randolph Hood, and Jeff Grossman, have come up 
with innovative ways to speed up Monte Carlo calculations using 
pure mathematics.

Monte Carlo Not Just for Gamblers
Radiation is energy on the move in the form of light rays or 

particles such as electrons. Thermal radiation consists of photons, 
which display characteristics of both high-speed particles and 
electromagnetic waves. The study of radiation transport deals with 
predicting and measuring how these photons move through matter. 
Put simply, thermal radiation transport is a calculational method 
that examines how heat moves around. 

Such calculations are an important part of models that, for 
example, simulate stellar evolution or inertial confinement fusion 
experiments. For a mundane example of radiation transport in 
action, consider a radiant space heater such as those commonly 
found in homes and garages. Radiant heaters generate invisible 
infrared radiation that transfers heat not to the air—as convection 
heaters do—but directly to objects and people themselves. With a 
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A material’s temperature is increased by the transport process of a thermal 

wave, which is propagating from left to right. The material was initially 

at 0.01 temperature units. At the start of the simulation, it was abruptly 

heated on the left side at a temperature of 1 unit. The black curve shows 

the results from a simulation using the standard formulation. The curve’s 

jagged appearance is caused by the mathematical noise in the calculations. 

The red curve shows the results from a simulation using the difference 

formulation. This calculation was performed using the same run time on the 

same computer as the standard formulation. The Monte Carlo noise in the 

difference formulation is too small to be shown.
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In the late 1980s, Fleck hired Brooks as a postdoctoral fellow 
to extend the IMC method so that it would be useful for lasers. 
Brooks developed a technique called symbolic IMC. “This 
technique removed the scattering problem,” he says, “and, instead, it 
gave us a system of nonlinear mathematical equations, or a matrix, 
to solve.”

Although the symbolic IMC method was faster and cleaner 
than the original IMC method, its nonlinear system still caused a 
problem: The noise in opaque materials required large numbers of 
Monte Carlo particles. Brooks and Szöke returned to this problem 
in 2003, to try to speed up the calculations. They found that the 
mathematical noise in the Monte Carlo system corresponds to 
what happens when a photon is absorbed in the zone in which it 
originates. This quick absorption of photons happens frequently 
in opaque materials. “As a result,” says Brooks, “when we’re 
modeling an opaque material, we often end up wasting a lot of 
time using computational power to solve a part of the problem 
that can easily be done with a pencil and paper.” 

The breakthrough came when the scientists realized that 
calculations aren’t needed for all of the photons—only for the 
ones that escape one zone and are transported to the next. Szöke 
suggested subtracting the calculations of the photons being 
emitted and reabsorbed—a mathematical construct they called 
the difference formulation. “So far,” Brooks says, “the difference 
formulation is working very well.”

The initial test problem was a one-dimensional simulation of 
a thick material slab. The simulated slab was divided into many 
zones with various opacities and time steps. Using the difference 
formulation increased the algorithm processing speed by factors 
of up to 1 million, whereas using the older formulation on the 
massively parallel supercomputers improved speed by factors 
of 1,000 or so. The makers of supercomputers need not worry, 
however, because the difference formulation can be adapted to 
parallel computing, and, says Brooks, the demands of computer 
users for increased speed are insatiable. 

Algorithms in Nanoscience
Mathematical improvements to Monte Carlo methods benefit 

other Livermore research areas besides astrophysics, including 
nanoscience. Williamson, Hood, and Grossman, who all work 
in PAT’s Quantum Simulations Group, model systems with only 
100 to 200 atoms to better determine their material properties. 
“At these sizes, quantum mechanical effects can change a 
material’s properties,” says Grossman. “For instance, shining laser 
light at a palm-size piece of silicon will cause the silicon to emit 
photons at a wavelength not visible to the human eye. If we shine 
the same laser light on a silicon quantum dot of 100 atoms (about 
2 nanometers square), the dot emits visible light. What’s more, 
the color of the emitted light—whether blue, red, or something 

in between—will depend on the size of the silicon chunk.” 
(See S&TR, November 2003, pp. 4–10.)

Why do materials behave so oddly in such small quantities? 
The answer can be found in a solution of Schrödinger’s equation, 
which describes the properties of an electron’s wave function. 
In this world of the very small, the electron is treated as a wave, 
not as a particle. Solving Schrödinger’s equation for one particle 
is simple enough to be done by hand. But as the number of 
electrons or particles grows, the calculation’s complexity increases 
exponentially, so computers—and lots of computational time—are 
required to solve the problem. 

One approach to these calculations is called the Quantum Monte 
Carlo (QMC) method. The QMC method uses random numbers 
to generate an approximate answer with an error bar that indicates 
the accuracy of the approximation. The smaller the error bar, the 
more accurate the approximation. To shrink the error bar, the code 
must choose more random numbers, which increases the program’s 
processing time because the code runs more iterations. Ideally, the 
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A computer code using Monte Carlo calculations can estimate 

the area under a curve as a fraction of the rectangular box that 

encompasses the curve. (a) When the code generates 500 random 

points, the area under the curve is estimated to be 69.6 percent 

of the rectangle, but the error is 5.9 percent. (b) With 5,000 points, 

the area is estimated to be 63.96 percent, and the error shrinks to 

0.29 percent. (c) With 500,000 points, the area is 63.53 percent with 

an error of 0.13 percent.

In 1946, mathematician Stanislaw Ulam named a set of 
statistical problem-solving methods “Monte Carlo.” The code 
itself was created at Los Alamos National Laboratory during the 
Manhattan Project, and the first Monte Carlo calculations were 
performed in 1948 on the ENIAC, the world’s first electronic digital 
computer. Monte Carlo methods use sequences of random numbers 
to perform computer simulations. Every simulation is based on 
events that happen randomly, so the outcome of a calculation is 
not always absolutely predictable—much like the throw of a dice 
or turn of a card. Monte Carlo is used routinely in diverse fields, 
including simulations of radiation transport in Earth’s atmosphere 
and esoteric subnuclear processes in high-energy physics 
experiments. The difference between Monte Carlo, the method, 
and Monte Carlo, the gaming capital, is that the method’s “game” 
involves a physical system rather than a game of chance, and its 
outcome is not a pot of money or stack of chips, but rather the 
solution to a problem.

Simple Monte Carlo at Work
A simple example of the Monte Carlo method is shown in the 

figure at right, where random numbers are used to calculate the area 
under a curve as a fraction of the rectangular box encompassing 
the curve. The original curve is enclosed within a rectangle, and 
points within the rectangle are chosen at random. The number of 
points under the curve is then determined as a fraction of the total 
points chosen. Because the total area of the enclosing rectangle is 
known, the ratio of the points under the curve to the total points 
approximates the fraction of the area lying under the curve. As more 
points are chosen, the approximation becomes more exact. 

For example, when only 500 points are chosen, the calculation 
estimates the area under the curve as 69.6 percent of the total area 
within the rectangle. But the accuracy of this estimate may be off by 

as much as 6 percent. Accuracy improves when more random numbers 
are chosen. With 5,000 points, the area under the curve is estimated 
to be 63.96 percent, and the error shrinks to 0.29 percent. With 
500,000 points, the area is 63.53 percent with an error of 0.13 percent.

Monte Carlo Primer
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error bar should be smaller than the differences being measured 
in the calculation. For example, if scientists want to determine 
whether the light emitted by a particular quantum dot will be blue 
or red, they set the code to calculate an answer that’s accurate 
enough—that has an error bar small enough—to differentiate 
between the opposite ends of the visible spectrum.

In determining whether an answer can be trusted, scientists 
can either run the simulation until the error bar is small enough 
or compare the results with accuracy benchmarks established in 
physical experiments. “In nanoscience, experiments are difficult to 
do because of the extremely small scales,” says Grossman, “so the 
ability to use highly accurate benchmark methods such as QMC 
are quite valuable.”

Until recently, however, QMC was only practical when looking 
at systems composed of small numbers of atoms. “It was a scaling 
issue,” says Grossman. “For instance, if it took 10 minutes for 
QMC to run a problem with 10 atoms, then running that same 
problem with 100 atoms required 10,000 minutes—or nearly a 
week of computational time.” 

To solve the scaling problem, Grossman, Williamson, and Hood 
applied a novel mathematical approach called the Wannier basis to 
the QMC algorithm. Essentially, they performed a mathematical 
transformation, taking a problem that was difficult to solve and 
transforming it into a domain where it was easier to solve. For 
example, one common mathematical transformation is using 
logarithms, a method for converting difficult multiplication 
problems into simpler addition problems. Another is performing 
a Fourier transform, to change the wave of a complex electrical 
signal into simpler sine and cosine waves. 

In the original QMC algorithm, the time needed to solve a problem 
scaled as the cube of the number of atoms involved. Applying the 
Wannier transformation to QMC produces an algorithm that scales 
linearly. As a result, the 100-atom system, which previously took a 
week to process, now requires only 100 minutes.

Williamson is working with Livermore physicist Fernando 
Reboredo to optimize these Wannier transformations. “We’re using 
nonorthogonal basis functions, which speed up the code another 
five times,” says Williamson. “That increase reduces the run time 
for the 100-atom system to only 20 minutes. The code also uses 
eight times less memory, so we can study much larger nanoscience 
problems.”

Math That Makes a Difference
Even as supercomputing hardware improves, computational 

scientists, physicists, and others look for better ways to increase the 
speed of their calculations. Each advance in trimming the time to 

run a code opens the possibility for simulating a process in more 
detail and for running multiple simulations in the same amount of 
time—or even less time—than had been required to process only one. 

“Each step forward,” says Brooks, “is based on the work that 
was done before. The advances often happen when people have 
the opportunity to come together and think differently. It’s the 
collision of people and ideas—through hard work and sudden 
insights—that leads to these new mathematical constructs, which, 
in turn, yield faster and in some cases more accurate predictions 
of phenomenon. In a way, these innovations owe much to 
serendipity, a lucky roll of the dice—it’s Monte Carlo in the 
scientific realm.”

—Ann Parker

Key Words: algorithm, difference formulation, implicit Monte Carlo 
(IMC) method, Monte Carlo, nanoscience, quantum dots, Quantum Monte 
Carlo (QMC) method, thermal radiation transport, Wannier basis.

For further information contact Eugene Brooks (925) 423-7341 

(eugenebrooks@llnl.gov) or Jeff Grossman (925) 423-6991 

(grossman3@llnl.gov).
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With a mathematical transformation called the Wannier basis, the number 

of electrons in a Quantum Monte Carlo (QMC) simulation can be increased 

without a prohibitive increase in the calculation’s run time.
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